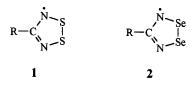
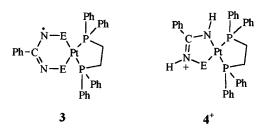
Chalcogen abstraction from dithiadiazolyl and diselenadiazolyl platinum complexes: crystal structure of a novel metallaheterocycle


Neil Feeder, Robert J. Less, Jeremy M. Rawson* and J. Nicholas B. Smith

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW


Received 9th November 1998

The open-shell complexes, (PhCNEEN)Pt(dppe) (E = S or Se) decompose *via* a chalcogen abstraction process coupled with N-protonation to yield the novel 10π metalla-heterocyclic cations {[PhCN(H)N(H)E]Pt(dppe)}⁺: the selenium complex is characterised by X-ray crystallography as its chloride salt.

The dithiadiazolyl radical RCNSSN, **1**, has an extremely varied coordination chemistry;¹ it undergoes oxidative addition reactions with a number of low-valent metal species to give mono-, di- or tri-metallic complexes in which the dithiadiazolyl radical ring-opens, with cleavage of the S–S bond. The diversity of the structural types is matched by the variable number of electrons which can be used for ligand–metal bonding (between 2 and 6 e⁻ depending on the coordination mode).¹ The series of monometallic complexes of general formula (RCNSSN)M(P₂) [where M = Pt, Pd and P = PPh₃ or $\frac{1}{2}$ dppe] in which the unpaired electron associated with **1** is retained in the complex exhibit an unusual reactivity. For example, (PhCNSSN)Pt-(PPh₃)₂ disproportionates² to form the trimetallic complex Pt₃(PhCNSSN)₂(PPh₃)₄ and oxidation of (PhCNSSN)Pd-(dppe) with [NO][BF₄] proceeds *via* ring protonation³ with the formation of [Pd₂(PhCNSSNH)(dppe)₂][BF₄]₂.

The coordination chemistry of the selenium analogue, **2**, has only recently begun to be investigated, but preliminary results^{4,5} indicate that the coordination chemistries of **1** and **2** are similar. Now we report a new decomposition pathway for the monometallic platinum dppe complexes, **3** (E = S or Se), which involves the unexpected extrusion of chalcogen and subsequent ring contraction to form a novel five-membered metallaheterocycle, **4**⁺.

The blue complex, (PhCNSSN)Pt(dppe), **3** (E = S),† was prepared by reaction of Pt(dppe)₂ with (PhCNSSN)₂ in an analogous fashion to (PhCNSSN)Pd(dppe).³ The solution EPR spectrum of pure **3** (E = S) [EPR (CH₂Cl₂, 298 K): g = 2.046, $a_N = 0.55$, $a_P = 0.35$ and $a_{Pt} = 5.48$ mT) exhibited well-resolved coupling to N, P and Pt, consistent with extensive

π-delocalisation of the unpaired electron. The intensity of the EPR signal of **3** (E = S) slowly decreased over time and a fiveline spectrum [EPR (CH₂Cl₂, 298 K): g = 2.010, $a_N = 0.50$ mT] typical⁶ of free **1** became observed. Subsequent ³¹P NMR spectra (CDCl₃) of the reaction mixture indicated three major P-containing products which were separated by TLC (silica support, 50:50 acetone–acetonitrile eluent).

An orange band was isolated ($R_f \approx 0.65$) which was assigned to the trimetallic complex, $Pt_3(PhCNSSN)_2(dppe)_2$ on the basis of the singlet ³¹P NMR resonance with Pt satellites (δ_P +49.8, ¹ J_{Pt} = 2299 Hz), UV–VIS spectrum and microanalytical data. This observation, coupled with the identification of **1** (by EPR) are consistent with disproportionation of **3** (E = S) [eqn. (1)] in an entirely analogous fashion to the PPh₃ derivative.²

$$3 (PhCNSSN)Pt(dppe) \longrightarrow Pt_3(PhCNSSN)_2(dppe)_2 + PhCNSSN + dppe \quad (1)$$

A pale pink band ($R_f \approx 0.5$) was characterised by NMR (MeCN, δ_P +44.8) and a subsequent X-ray diffraction study⁷ as 1,2-bis(diphenylphosphino)ethane disulfide, Ph₂P(S)CH₂-CH₂P(S)Ph₂ (dppeS₂). The dppe, arising as a by-product during the primary decomposition pathway [eqn. (1)] abstracts sulfur (presumably from **3**, see below) to form dppeS₂.

The third, yellow, band $(R_f \approx 0.2)$ exhibited two ³¹P resonances with ²J_P couplings and ¹J_{Pt} satellites (δ_P +40.9, ²J_P = 9, ¹J_{Pt} = 3051 Hz; δ_P +44.7, ²J_P = 9, ¹J_{Pt} = 2631 Hz), correspondent ing to two chemically distinct P environments, i.e. PPtP'. The FIB mass spectrum exhibited a molecular ion peak at m/z =744.1 indicative of S-extrusion from 3 (E = S) and protonation of both N atoms, *i.e.* the cation $[4]^+$ (E = S). By comparison with other N,S-bound sulfur-nitrogen ligands⁸ such as SNSN² and SNSNH⁻, the two ³¹P NMR resonances (at $\delta_{\rm P}$ +40.9 and $\delta_{\rm P}$ +44.7) can be assigned as P *trans* to N and S respectively. Abstraction of sulfur from organic sulfides and chelating sulfide ligands by nucleophiles such as CN- or PPh3 is not uncommon,⁹ e.g. $(NH_4)_2Pt(S_5)_3$ is attacked by PPh₃ to give $(Ph_3P)_2PtS_4$. In this case, the S-abstraction from 3 is carried out by dppe formed by disproportionation of 3 itself [eqn. (1)]. Since no free dppe was observed in the product mixture, the overall reaction can be considered to generate 2 moles of 4⁺ from 5 moles of 3. On this basis, recovered yields of [4]Cl were ca. 50%. The source of protonation is not entirely clear, although the presence of the Cl- anion in the product indicates that the chlorinated solvents (CH₂Cl₂ and CDCl₃) are intimately involved in the reaction. Similar N-protonation reactions have previously been observed.^{3,10} Although the formation of [4]⁺ (E = S) is accelerated in the presence of a source of H⁺ ions (e.g. carrying out the reaction in wet solvents, with the mixture exposed to the air, or by the addition of silica to the reaction solution) [eqn. (2)], ring-protonation is still observed under

2 (PhCNSSN)Pt(dppe) + dppe $\xrightarrow{2H/2H^+}$

$2 \{ [PhCN(H)SN(H)]Pt(dppe) \}^+ + dppeS_2 \quad (2)$

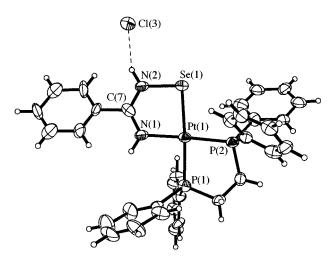


Fig. 1 Crystal structure of [4]Cl (E = Se) with heteroatom labelling and with 50% probability ellipsoids.

rigorously dry conditions. Attempts to grow crystals of 4^+ (E = S) salts from CH₂Cl₂ by slow evaporation or layering with hexane or Et₂O proved unsuccessful.

In a similar manner, addition of excess Pt(dppe)₂ to (Ph-CNSeSeN)₂ yielded a green complex which exhibited a broad singlet EPR spectrum with ¹⁹⁵Pt satellites [EPR (C_6H_5Me): g = 2.058, $a_{Pt} = 5.4$ mT], which was assigned to 3 (E = Se). Replacement of S by Se leads to line broadening and poorly resolved EPR spectra,⁴ and in this instance hyperfine coupling to N could not be resolved. The green colouration was rapidly dissipated to produce a yellow solution containing (PhCNSe-SeN)₂ [EPR (C_6H_5Me): g = 2.03] and a small quantity of yellow precipitate. The reaction was repeated on a preparative scale, and a ³¹P NMR of the yellow precipitate indicated a mixture of two Pt-containing products, with chemical shifts and coupling constants analogous to the sulfur system. The major product, [4]Cl (E = Se) obtained in 20% yield, exhibited two P environments ($\delta_{\rm p}$ = +41.9, ${}^{2}J_{\rm p}$ = 9, ${}^{1}J_{\rm pt}$ = 3019 Hz; $\delta_{\rm p}$ +44.7, ${}^{2}J_{\rm p}$ = 9, ${}^{1}J_{\rm pt}$ = 2691 Hz), analogous to [4]Cl (E = S) whilst the minor product exhibited a single 31 P NMR resonance ($\delta_{\rm p}$ +47.6, 47 Cl ($\delta_{\rm p}$ = 47.6, 11 Cl ($\delta_{\rm p}$ = 47.6, 12 Cl ($\delta_{\rm p}$ = 47.6, {}^{12}Cl ($\delta_{\rm p}$ = 47.6, {}^{1 $J_{Pt} = 2363$ Hz), consistent with $Pt_3(PhCNSeSeN)_2(dppe)_2$. The low solubility of both products precluded the observation of Se satellites. The mass spectrum (FAB) exhibited a molecular ion peak at m/z 791.9, consistent with [4]⁺ (E = Se), analogous to [4]⁺ (E = S) and also a $v_{\rm NH}$ = 3350 cm⁻¹ absorption in the IR. Crystals of [4]Cl (E = Se) suitable for X-ray diffraction ‡ were grown by slow diffusion methods (dichloromethane-hexane).

The structure of [4]Cl (E = Se) is shown in Fig. 1. The central Pt atom takes up an approximately square-planar geometry with a P₂NSe donor set. The chelate nature of both rings leads to some deviation from ideality with both PPtP and NPtSe angles a little less than 90° [84.98(16) and 83.8(4)° respectively]. The Pt-P bonds are unexceptional [averaging 2.255(5) Å] and the Pt-Se and Pt-N bond lengths are 2.4085(19) and 2.043(15) Å respectively. Whilst derivatives of 3 (E = S) typically exhibit a puckering of the metalla-heterocyclic framework to accomodate the ring strain induced at Pt, the structure of [4]Cl (E = Se)has an almost planar CN_2SePt ring (mean deviation < 0.03 Å). The mean C-N bond length [1.31(2) Å] is the same as those observed ¹² in both 2^+ and 2 (R = Ph) which average at 1.36(3) and 1.32(2) Å respectively. In comparison, the Se-N bond length at 1.890(15) Å is longer than that observed 12 in $\mathbf{2}^+$ and $\mathbf{2}$ (R = Ph) [averaging 1.76(2) Å and 1.78(1) Å respectively]. This can be rationalised in terms of the addition of an extra electron into an N-Se antibonding orbital (described below). The H atom attached to N(2) is hydrogen-bonded to the chloride anion (N \cdots Cl 3.07 Å) and the structure can be considered as (PhCNSeNH)Pt(dppe)·HCl (the HCl presumably arises from the CH₂Cl₂ used during recrystallisation). The second H atom is sterically more protected and does not appear to exhibit any H-bonding, although there is a long intermolecular contact to a Cl atom of a CH_2Cl_2 solvate molecule (N · · · Cl at 3.78 Å).

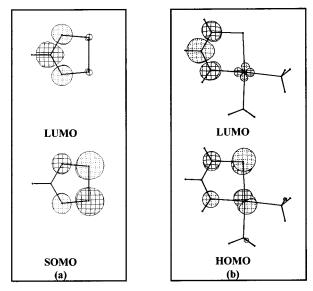


Fig. 2 Frontier molecular orbitals of (a) [HCNSeSeN] and (b) $\{[HCN(H)SeN(H)]Pt(PH_3)_2\}^+$.

Extended Hückel calculations¹³ on the parent {[HCN(H)-SeN(H)]Pt(PH₃)₂ $^+$ cation indicate that the frontier molecular orbitals are both of π -character (Fig. 2) with the LUMO based predominantly on the NCN fragment and the HOMO on the N₂SePt unit. These π molecular orbitals are closely related to those observed for the parent heterocycle, 2^+ ; the two structures being related by replacement of a Se atom in 2 by a $Pt(PH_3)_2$ unit and addition of two H atoms on the N atoms. In 2^+ and 2, there are 6π and 7π electrons respectively. In 4⁺ the RC(NH)-(NH)Se⁺ fragment provides 6π electrons and the Pt centre contributes two orbitals $(d_{xz} \text{ and } d_{yz})$ and a further $4e^-$ for π -bonding, producing a formally 10π aromatic system; the d_{yz} orbital contributing to the HOMO of 4⁺. The HOMOs of both 2 and 4⁺ are non-bonding with respect to C-N and antibonding with respect to N-Se. The difference in the Se-N bond lengths between 2^+ , 2 and 4^+ , described above, can then be rationalised in terms of the sequential addition of electrons into an N-Se antibonding orbital.

Acknowledgements

We would like to thank the EPSRC and Ciba-Geigy for studentships (R. J. L. and J. N. B. S. respectively), and the Royal Society for an equipment grant.

Notes and references

† 3 (E = S): yield = 92%, mp 218 °C (decomp.), UV–VIS $\lambda_{max} = 680$ nm (Found: C, 51.3; H, 3.7; N, 3.9. Calc.: C, 51.2; H, 3.8; N, 3.6%). ‡ Crystal data: [4]Cl·CH₂Cl₂: C₃₄H₃₃Cl₃N₂P₂PtSe, $M_r = 911.96$, monoclinic, $P_{1/c}$, a = 15.000(5), b = 16.426(5), c = 14.722(5) Å, $\beta = 103.11(2)^\circ$, V = 3533(2) Å³, Z = 4, $\rho_{calc} = 1.715$ g cm⁻³, F(000) = 1776, graphite-monochromated Mo-Ka radiation, $\lambda = 0.71069$ Å, $\mu = 5.346$ mm⁻¹, T = 180(2) K. Of 11324 reflections collected on a Rigaku R-Axis Ic image plate diffractometer, 6221 were unique data ($2\theta < 50.58^\circ$, $R_{int} = 0.153$). The structure was solved by direct methods and refined by full-matrix methods on F^2 values for all reflections¹¹ with anisotropic displacement parameters for all non-hydrogen atoms, except the CH₂Cl₂ solvent molecule which was refined isotropically. H atoms, including N–H, were added at calculated postions and refined using a riding model. The refinement of 329 parameters on F^2 using all 6221 unique reflections converged at $wR_2 = 0.144$, $R_1 = 0.071$ [for $F_o > 2\sigma(F_o)$] and goodness of fit S = 0.85. Largest residual electron densities were within +1.03/–1.37 e Å⁻³. CCDC reference number 186/1240. See http://www.rsc.org/suppdata/dt/1998/4091 for crystallographic files in .cif format.

- 1 A. J. Banister, I. May, J. M. Rawson and J. N. B. Smith, J. Organomet. Chem., 1998, 550, 241.
- 2 A. J. Banister, I. B. Gorrell, J. A. K. Howard, S. E. Lawrence, C. W. Lehman, I. May, J. M. Rawson, B. K. Tanner, C. I. Gregory, A. J. Blake and S. P. Fricker, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 377.

- 3 A. J. Banister, J. A. K. Howard, I. May and J. M. Rawson, *Chem. Commun.*, 1997, 1763.
- 4 J. M. Rawson, A. J. Banister and I. May, *Magn. Reson. Chem.*, 1994, **32**, 487.
- 5 J. E. Davies, R. J. Less, I. May and J. M. Rawson, New. J. Chem., 1998, 763.
- 6 J. M. Rawson, A. J. Banister and I. Lavender, *Adv. Heterocycl. Chem.*, 1995, **62**, 137.
- 7 J. A. K. Howard, A. S. Batsanov and J. N. B. Smith, unpublished work.
- 8 I. P. Parkin and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1990, 925; C. A. Mahoney, I. P. Parkin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1989, 1179; (c) R. Jones, P. F. Kelly, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1988, 803.
- 9 See for example: B. Kreutzer, P. Kreutzer and W. Beck, Z. Naturforsch., Teil B, 1972, 27, 461; D. Dudis and J. P. Fackler Jr., Inorg.

Chem., 1982, 21, 3577; J. P. Fackler, Jr., J. A. Fetchin and D. C. Fries, J. Am. Chem. Soc., 1972, 94, 7332.

- 10 R. T. Boeré, K. H. Moock, V. Klassen, J. Weaver, D. Lentz and H. Michael-Schulz, *Can. J. Chem.*, 1995, **73**, 1444.
- 11 G. M. Sheldrick, SHELXTL Manual, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1990; G. M. Sheldrick, SHELXL 93, Program for crystal structure determination, University of Göttingen, 1993.
- 12 P. D. B. Belluz, A. W. Cordes, E. M. Kristof, P. V. Kristof, S. W. Liblong and R. T. Oakley, *J. Am. Chem. Soc.*, 1989, **111**, 9276.
- 13 C. Mealli and D. M. Proserpio, J. Chem. Educ., 1990, 67, 399 (PC version 4.0, 1994, using in-laid parameters).

Communication 8/08758J